9 research outputs found

    High-Dimensional Spatio-Temporal Indexing

    Get PDF
    There exist numerous indexing methods which handle either spatio-temporal or high-dimensional data well. However, those indexing methods which handle spatio-temporal data well have certain drawbacks when confronted with high-dimensional data. As the most efficient spatio-temporal indexing methods are based on the R-tree and its variants, they face the well known problems in high-dimensional space. Furthermore, most high-dimensional indexing methods try to reduce the number of dimensions in the data being indexed and compress the information given by all dimensions into few dimensions but are not able to store now - relative data. One of the most efficient high-dimensional indexing methods, the Pyramid Technique, is able to handle high-dimensional point-data only. Nonetheless, we take this technique and extend it such that it is able to handle spatio-temporal data as well. We introduce a technique for querying in this structure with spatio-temporal queries. We compare our technique, the Spatio-Temporal Pyramid Adapter (STPA), to the RST-tree for in-memory and on-disk applications. We show that for high dimensions, the extra query-cost for reducing the dimensionality in the Pyramid Technique is clearly exceeded by the rising query-cost in the RST-tree. Concluding, we address the main drawbacks and advantages of our technique

    High-dimensional spatio-temporal indexing

    Get PDF
    There exist numerous indexing methods which handle either spatio-temporal or high-dimensional data well. How- ever, those indexing methods which handle spatio-temporal data well have certain drawbacks when confronted with high-dimensional data. As the most efficient spatio-temporal indexing methods are based on the R-tree and its variants, they face the well known problems in high-dimensional space. Furthermore, most high-dimensional indexing methods try to reduce the number of dimensions in the data being indexed and compress the information given by all dimensions into few dimensions but are not able to store now - relative data. One of the most efficient high-dimensional indexing methods, the Pyramid Technique, is able to handle high-dimensional point-data only. Nonetheless, we take this technique and extend it such that it is able to handle spatio-temporal data as well. We introduce a technique for querying in this structure with spatio-temporal queries. We compare our technique, the Spatio-Temporal Pyramid Adapter (STPA), to the RST-tree for in-memory and on-disk applications. We show that for high dimensions, the extra query-cost for reducing the dimensionality in the Pyramid Technique is clearly ex- ceeded by the rising query-cost in the RST-tree. Concluding, we address the main drawbacks and advantages of our technique

    Prosody-Based Sound-Emotion Associations in Poetry

    Get PDF
    Conveying emotions in spoken poetry may be based on a poem's semantic content and/or on emotional prosody, i.e., on acoustic features above single speech sounds. However, hypotheses of more direct sound–emotion relations in poetry, such as those based on the frequency of occurrence of certain phonemes, have not withstood empirical (re)testing. Therefore, we investigated sound–emotion associations based on prosodic features as a potential alternative route for the, at least partially, non-semantic expression and perception of emotions in poetry. We first conducted a pre-study designed to validate relevant parameters of joy- and sadness-supporting prosody in the recitation, i.e. acoustic production, of poetry. The parameters obtained thereof guided the experimental modification of recordings of German joyful and sad poems such that for each poem, three prosodic variants were constructed: one with a joy-supporting prosody, one with a sadness-supporting prosody, and a neutral variant. In the subsequent experiment, native German speakers and participants with no command of German rated the joyfulness and sadness of these three variants. This design allowed us to investigate the role of emotional prosody, operationalized in terms of sound-emotion parameters, both in combination with and dissociated from semantic access to the emotional content of the poems. The findings from our pre-study showed that the emotional content of poems (based on pre-classifications into joyful and sad) indeed predicted the prosodic features pitch and articulation rate. The subsequent perception experiment revealed that cues provided by joyful and sad prosody specifically affect non-German-speaking listeners' emotion ratings of the poems. Thus, the present investigation lends support to the hypothesis of prosody-based iconic relations between perceived emotion and sound qualia. At the same time, our findings also highlight that semantic access substantially decreases the role of cross-language sound–emotion associations and indicate that non-German-speaking participants may also use phonetic and prosodic cues other than the ones that were targeted and manipulated here

    Collaborative multi-scale 3D city and infrastructure modeling and simulation

    Get PDF
    Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future

    Automated Performance Test Generation and Comparison for Complex Data Structures - Exemplified on High-Dimensional Spatio-Temporal Indices

    No full text
    There exist numerous approaches to index either spatio-temporal or high-dimensional data. None of them is able to efficiently index hybrid data types, thus spatio-temporal and high-dimensional data. As the best high-dimensional indexing techniques are only able to index point-data and not now-relative data and the best spatio-temporal indexing techniques suffer from the curse of dimensionality, this thesis introduces the Spatio-Temporal Pyramid Adapter (STPA). The STPA maps spatio-temporal data on points, now-values on the median of the data set and indexes them with the pyramid technique. For high-dimensional and spatio-temporal index structures no generally accepted benchmark exists. Most index structures are only evaluated by custom benchmarks and compared to a tiny set of competitors. Benchmarks may be biased as a structure may be created to perform well in a certain benchmark or a benchmark does not cover a certain speciality of the investigated structures. In this thesis, the Interface Based Performance Comparison (IBPC) technique is introduced. It automatically generates test sets with a high code coverage on the system under test (SUT) on the basis of all functions defined by a certain interface which all competitors support. Every test set is performed on every SUT and the performance results are weighted by the achieved coverage and summed up. These weighted performance results are then used to compare the structures. An implementation of the IBPC, the Performance Test Automation Framework (PTAF) is compared to a classic custom benchmark, a workload generator whose parameters are optimized by a genetic algorithm and a specific PTAF alternative which incorporates the specific behavior of the systems under test. This is done for a set of two high-dimensional spatio-temporal indices and twelve variants of the R-tree. The evaluation indicates that PTAF performs at least as good as the other approaches in terms of minimal test cases with a maximized coverage. Several case studies on PTAF demonstrate its widespread abilities

    Contiguity-based sound iconicity : the meaning of words resonates with phonetic properties of their immediate verbal contexts

    No full text
    We tested the hypothesis that phonosemantic iconicity––i.e., a motivated resonance of sound and meaning––might not only be found on the level of individual words or entire texts, but also in word combinations such that the meaning of a target word is iconically expressed, or highlighted, in the phonetic properties of its immediate verbal context. To this end, we extracted single lines from German poems that all include a word designating high or low dominance, such as large or small, strong or weak, etc. Based on insights from previous studies, we expected to find more vowels with a relatively short distance between the first two formants (low formant dispersion) in the immediate context of words expressing high physical or social dominance than in the context of words expressing low dominance. Our findings support this hypothesis, suggesting that neighboring words can form iconic dyads in which the meaning of one word is sound-iconically reflected in the phonetic properties of adjacent words. The construct of a contiguity-based phono-semantic iconicity opens many venues for future research well beyond lines extracted from poems

    Poetic speech melody: A crucial link between music and language.

    No full text
    Research on the music-language interface has extensively investigated similarities and differences of poetic and musical meter, but largely disregarded melody. Using a measure of melodic structure in music--autocorrelations of sound sequences consisting of discrete pitch and duration values--, we show that individual poems feature distinct and text-driven pitch and duration contours, just like songs and other pieces of music. We conceptualize these recurrent melodic contours as an additional, hitherto unnoticed dimension of parallelistic patterning. Poetic speech melodies are higher order units beyond the level of individual syntactic phrases, and also beyond the levels of individual sentences and verse lines. Importantly, auto-correlation scores for pitch and duration recurrences across stanzas are predictive of how melodious naive listeners perceive the respective poems to be, and how likely these poems were to be set to music by professional composers. Experimentally removing classical parallelistic features characteristic of prototypical poems (rhyme, meter, and others) led to decreased autocorrelation scores of pitches, independent of spoken renditions, along with reduced ratings for perceived melodiousness. This suggests that the higher order parallelistic feature of poetic melody strongly interacts with the other parallelistic patterns of poems. Our discovery of a genuine poetic speech melody has great potential for deepening the understanding of the music-language interface

    Poetic speech melody : a crucial link between music and language

    No full text
    Research on the music-language interface has extensively investigated similarities and differences of poetic and musical meter, but largely disregarded melody. Using a measure of melodic structure in music––autocorrelations of sound sequences consisting of discrete pitch and duration values––, we show that individual poems feature distinct and text-driven pitch and duration contours, just like songs and other pieces of music. We conceptualize these recurrent melodic contours as an additional, hitherto unnoticed dimension of parallelistic patterning. Poetic speech melodies are higher order units beyond the level of individual syntactic phrases, and also beyond the levels of individual sentences and verse lines. Importantly, auto-correlation scores for pitch and duration recurrences across stanzas are predictive of how melodious naive listeners perceive the respective poems to be, and how likely these poems were to be set to music by professional composers. Experimentally removing classical parallelistic features characteristic of prototypical poems (rhyme, meter, and others) led to decreased autocorrelation scores of pitches, independent of spoken renditions, along with reduced ratings for perceived melodiousness. This suggests that the higher order parallelistic feature of poetic melody strongly interacts with the other parallelistic patterns of poems. Our discovery of a genuine poetic speech melody has great potential for deepening the understanding of the music-language interface

    Literaturverzeichnis

    No full text
    corecore